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Marine red algae (Rhodophyta) are a rich source of bioactive
halogenated natural products, including cyclic terpénésnitial
studies on the biogenesis of halogenated terpenes, carried out at

time when the existence of marine haloperoxidase enzymes had

only been hypothesized, demonstrated that reactions of terpenes
with 2,4,4,6-tetrabromocyclohexa-2,5-dienone (TBCO), og/ Br
AgBF, (i.e., reagents that generate bromonium ion), in nitromethane
or dichloromethane (i.e., nonnucleophilic solvents), can induce
bromination and cyclization of terpent%’ When the same
reactions were carried out in water, however, bromohydrin forma-
tion resulted without cyclizatio”h® The subsequent discovery of
marine algal haloperoxidase enzyfm&xoupled to recent results
on the selectivity of these enzynté¥?provides an attractive basis
from which to begin to elucidate the biosynthesis of halogenated
marine natural products. Vanadium bromoperoxidase B¥PO)

is particularly prevalent, having been found in all classes of marine
algael?13The active site is comprised of a vanadate ion coordinated
to the protein by a single histidine residue which resides at the
bottom of a broad active-site chanA¢l>These enzymes function
by coordination of hydrogen peroxide to V(V), subsequent oxidation
of halide (CI-, Br—, 1) producing a two-electron oxidized halogen
species (e.g., “Br’ in the case of Br oxidation), followed by
electrophilic halogenation of the organic substfatés We report,

for the first time, evidence thatVBrPO isolated and cloned from

marine red algae that produce halogenated compounds (e.g.

Plocamium cartilagineupiaurencia pacificaCorallina officinalis)
can catalyze the bromination and cyclization of terpenes and terpen
analogues, producing cyclic structures similar to laurencin, a
brominated G acetogenin, fronLaurencia glandulifergd®” and
o andg snyderols, brominated sesquiterpenes ft@uarencia spp®
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Reaction of 0.5 mM nerol], with V—BrPO (C. officinalis P.
cartilagineum L. pacificg in the presence of bromide ion and
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Figure 1. H NMR spectra o, 3-bromo-2,2,6-trimethyl-3,4,5,8-tetrahydro-
2H-oxocine, isolated from the ¥BrPO-catalyzed reaction with nerol.
Inset: Expanded region around the double of doublet resonances at 4.37
ppm. (A) V—BrPO-catalyzed reaction; (B) TBCO reaction in nitromethane.

Scheme 1. Proposed Reaction Sequence for the
V—BrPO-Catalyzed Reaction with Nerol
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chromatography, consistent with previous reports on TBCO bro-
moetherification reactiorf&?! Therefore, the eight-membered cyclic

®romoether2 formed in the \V-BrPO-catalyzed brominative

cyclization of1 occurs within the active site of the enzyme without
equilibration of the oxidized bromine intermediate with the sur-
rounding aqueous medium. Formationlfikely results from an
initial V—BrPO-catalyzed bromination reaction at the terminal
olefin followed by intramolecular nucleophilic attack by the pendant
alcohol (Scheme 1). While this @&xdo cyclization reaction is
entropically unfavored, the eight-membered ring product is nev-
ertheless the expected Markovnikov addition product, and the ring
is similar to that in the marine natural product, laurencin, which
has been proposed to be derived from a straight-chain C

hydrogen peroxide produces the monobromo eight-membered cyclicacetogenin precursét.

ether2 in 5% yield, as identified by mass spectromeinyz 232,

234, and NMR (Figure 1), along with the terminal bromohydrin,
dibrominated, and epoxide produétsThe chemical shifts of the
gemdimethyl singlets ad 1.39 and 1.43 indicate that these methyl
groups are no longer attached to an olefinic carbon. In addition, a
signal for the protom to the bromine was observed@#.37 ppm

(dd, 1H,J = 4.8 and 12 Hz), characteristic of bromocyclic structures
of Laurencia metabolites (Figure 1)51° Cyclic ether 2 was
produced without enantioselection. In contrast, the reaction of nerol
with aqueous bromine produces only a mixture of bromohydrin,
epoxide, and dibrominated products, without formatio2.&8f The
reaction between nerol and the'Bgenerating species TBCO in
nitromethane also resulted in the formatior2ah 25% yield after
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When the \-BrPO-catalyzed reaction is carried out with
geraniol,3, two singly brominated cyclic products (Scheme 2) are
isolated along with noncyclic bromohydrin, epoxide, and dibro-
moproducts® The a and 3 isomers of the cyclic products from
the V—BrPO reaction were distinguished by their characteristic
NMR spectra:a isomer4 containggemdimethyl signals ad 1.01
(s, 3H) and 1.20 (s, 3H), aHBr signal at 4.17 (dd, 1H] =9, 7
Hz), and the olefinic signal at 5.38 ppm;s isomer5 contains
gemdimethyl signals ad 0.91 (s, 3H) and 1.20 (s, 3H), aHBr
signal at 4.15 (dd, 1HJ = 10.3, 4 Hz, ®iBr), and exocyclic
methylene signals at 4.79 and 5.04. Producsand5 are each
isolated as a single diastereomer without enantioselectivity; the nOe
observed between H-2 and H-6 (geraniol numbering) indicates the
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Scheme 2. Proposed Reaction Sequence for the
V—BrPO-Catalyzed Bromocyclization of Geraniol
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cyclization is consistent with previous biosynthetic studies on the
formation ofa- andS-snyderols from nerolidol employing TBCO

in nonnucleophilic solventsContinuing investigations are focused

on elucidating the reactivity with other terpene substrates such as
sesquiterpenes and diterpenes, as well as the reactivity of vanadium
haloperoxidases from different marine algae that produce different
halogenated cyclic terpene natural products.
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cyclized monobrominated species were observed in control reactions
with agueous bromine, analogous to the reactivity with nerol. The
internal olefin geometry prohibits nucleophilic trapping by the
alcohol, leading to the alternative reaction pathway.

Supporting Information Available: Experimental details and

spectroscopic data for compour®ls4, and5 (PDF). This material is
available free of charge via the Internet at http://pubs.acs.org.
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